Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0054123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888993

RESUMO

IMPORTANCE: New antibacterial agents are urgently needed to counter increasingly resistant bacteria. One approach to this problem is library screening for new antibacterial agents. Library screening efforts can be improved by increasing the information content of the screening effort. In this study, we screened the National Cancer Institute diversity set V against methicillin-resistant Staphylococcus aureus (MRSA) with several enhancements. One of these is to screen the library before and after microsomal metabolism as means to identify potential active metabolites. A second enhancement is to screen the library in the absence and presence of sub-minimum inhibitory concentration levels of another antibiotic, such as cefoxitin in this study. This identified four agents with synergistic activity with cefoxitin out of 16 agents with good MRSA activity alone. Finally, active agents from this effort were counter-screened in the presence of thymidine, which quickly identified three folate/thymidine biosynthesis inhibitors, and also screened for bactericidal vs bacteriostatic activity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Estados Unidos , Cefoxitina/farmacologia , Cromatografia Líquida , National Cancer Institute (U.S.) , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Timidina
2.
Angew Chem Int Ed Engl ; 62(44): e202312048, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37669353

RESUMO

Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI-mediated electrochemical C-H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real-time probing of the profiles of redox-active components of these rapid electrosynthesis reactions.

3.
Microbiol Spectr ; 11(1): e0372622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36519895

RESUMO

New strategies are urgently needed to address the public health threat of antimicrobial resistance. Synergistic agent combinations provide one possible pathway toward addressing this need and are also of fundamental mechanistic interest. Effective methods for comprehensively identifying synergistic agent combinations are required for such efforts. In this study, an FDA-approved drug library was screened against methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300) in the absence and presence of sub-MIC levels of ceftobiprole, a PBP2a-targeted anti-MRSA ß-lactam. This screening identified numerous potential synergistic agent combinations, which were then confirmed and characterized for synergy using checkerboard analyses. The initial group of synergistic agents (sum of the minimum fractional inhibitory concentration ∑FICmin ≤0.5) were all ß-lactamase-resistant ß-lactams (cloxacillin, dicloxacillin, flucloxacillin, oxacillin, nafcillin, and cefotaxime). Cloxacillin-the agent with the greatest synergy with ceftobiprole-is also highly synergistic with ceftaroline, another PBP2a-targeted ß-lactam. Further follow-up studies revealed a range of ceftobiprole synergies with other ß-lactams, including with imipenem, meropenem, piperacillin, tazobactam, and cefoxitin. Interestingly, given that essentially all other ceftobiprole-ß-lactam combinations showed synergy, ceftaroline and ceftobiprole showed no synergy. Modest to no synergy (0.5 < ∑FICmin ≤ 1.0) was observed for several non-ß-lactam agents, including vancomycin, daptomycin, balofloxacin, and floxuridine. Mupirocin had antagonistic activity with ceftobiprole. Flucloxacillin appeared particularly promising, with both a low intrinsic MIC and good synergy with ceftobiprole. That so many ß-lactam combinations with ceftobiprole show synergy suggests that ß-lactam combinations can generally increase ß-lactam effectiveness and may also be useful in reducing resistance emergence and spread in MRSA. IMPORTANCE Antimicrobial resistance represents a serious threat to public health. Antibacterial agent combinations provide a potential approach to combating this problem, and synergistic agent combinations-in which each agent enhances the antimicrobial activity of the other-are particularly valuable in this regard. Ceftobiprole is a late-generation ß-lactam antibiotic developed for MRSA infections. Resistance has emerged to ceftobiprole, jeopardizing this agent's effectiveness. To identify synergistic agent combinations with ceftobiprole, an FDA-approved drug library was screened for potential synergistic combinations with ceftobiprole. This screening and follow-up studies identified numerous ß-lactams with ceftobiprole synergy.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Floxacilina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamas/farmacologia , Cloxacilina/farmacologia , Testes de Sensibilidade Microbiana
4.
Talanta Open ; 82023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38187186

RESUMO

Resolving isomeric analytes is challenging given their physical similarity - making chromatographic resolution difficult, and their identical masses - making simple mass resolution impossible. MS/MS data provides a means to resolve isomeric analytes if their MS/MS intensity profiles are sufficiently different. Glucosamine-6-phosphate (GlcN-6P) and glucosamine-1-phosphate (GlcN-1P) are early bacterial cell wall intermediates. These and other isomeric hexosamine-phosphates are highly polar and unretained on reverse-phase chromatography media. Three commercially available hexosamine-phosphate standards (GlcN-6P, GlcN-1P, and GalN-1P) were derivatized with octanoic anhydride, and chromatographic conditions were established to resolve these analytes on C18 columns. GlcN-1P and GalN-1P overlapped chromatographically under all tested chromatography conditions. Three MS/MS fragments (79, 97, and 199 m/z) were common to all three commercially available hexosamine-phosphates. Intensity ratios of the three MS/MS fragments from these three hexosamine-phosphate standards were used to deconvolute mixture chromatograms of these standards by non-negative linear regression. This approach allowed the complete resolution of these analytes. The chromatographically overlapping GlcN-1P and GalN-1P, which shared similar but modestly different MS/MS intensity profiles, were fully resolved with this non-negative deconvolution approach. This approach was then applied to MRSA, VSE, and VRE bacterial extracts before and after exposure to vancomycin. This demonstrated a substantial (3-fold) increase in GlcN-6P in vancomycin-treated MRSA samples but not in vancomycin-treated VSE or VRE samples. These observations appear to localize previously observed differences between MRSA and VRE/VSE peptidoglycan biosynthesis regulation to GlmS, which synthesizes GlcN-6P and is the product of a regulatory ribozyme sensitive to the levels of GlcN-6P.

5.
Microbiol Spectr ; 10(5): e0141222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35969069

RESUMO

Antimicrobial resistance is a major public health threat, and there is an urgent need for new strategies to address this issue. In a recent study, a library screening strategy was developed in which an FDA-approved drug library was screened against methicillin-resistant Staphylococcus aureus (MRSA) in both its original (unmetabolized [UM]) and its human liver microsome metabolized (postmetabolized [PM]) forms and in the absence and presence of a resistant-to antibiotic. This allows the identification of agents with active metabolites and agents that can act synergistically with the resistant-to antibiotic. In this study, this strategy is applied to VanA-type vancomycin-resistant Enterococcus faecium (VREfm) in the absence and presence of vancomycin. Thirteen drugs with minimum MICs that were ≤12.5 µM under any tested condition (UM/PM vs. -/+vancomycin) were identified. Seven of these appeared to act synergistically with vancomycin, and follow-up checkerboard analyses confirmed synergy (∑FICmin ≤0.5) for six of these. Ultimately four rifamycins, two pleuromutilins, mupirocin, and linezolid were confirmed as synergistic. The most synergistic agent was rifabutin (∑FICmin = 0.19). Linezolid, a protein biosynthesis inhibitor, demonstrated relatively weak synergy (∑FICmin = 0.5). Only mupirocin showed significantly improved activity after microsomal metabolism, indicative of a more active metabolite, but efforts to identify an active metabolite were unsuccessful. Spectra of activity of several hits and related agents were also determined. Gemcitabine showed activity against a number vancomycin-resistant E. faecium and E. faecalis strains, but this activity was substantially weaker than previously observed in MRSA. IMPORTANCE Resistance to currently used antibiotics poses a serious threat to public health. This study reports a complete screen of 1,000 FDA-approved drugs and their metabolites against vancomycin-resistant Enterococcus faecium (VREfm) in both the absence and presence of vancomycin. This identified potentially synergistic combinations of FDA-approved drugs with vancomycin, and a number of these were confirmed in follow-up checkerboard assays. Among intrinsically active FDA-approved drugs, gemcitabine was identified as having activity against a panel of VRE strains.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Staphylococcus aureus Resistente à Meticilina , Rifamicinas , Enterococos Resistentes à Vancomicina , Humanos , Vancomicina/farmacologia , Linezolida , Mupirocina , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Rifabutina
6.
ACS Chem Biol ; 16(8): 1610-1611, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34324290
7.
J Bacteriol ; 203(16): e0023021, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34060906

RESUMO

Resistance in VanA-type vancomycin-resistant Enterococcus faecium (VREfm) is due to an inducible gene cassette encoding seven proteins (vanRSHAXYZ). This provides for an alternative peptidoglycan (PG) biosynthesis pathway whereby D-Ala-D-Ala is replaced by D-Ala-d-lactate (Lac), to which vancomycin cannot bind effectively. This study aimed to quantify cytoplasmic levels of normal and alternative pathway PG intermediates in VanA-type VREfm by liquid chromatography-tandem mass spectrometry before and after vancomycin exposure and to correlate these changes with changes in vanA operon mRNA levels measured by real-time quantitative PCR (RT-qPCR). Normal pathway intermediates predominated in the absence of vancomycin, with low levels of alternative pathway intermediates. Extended (18-h) vancomycin exposure resulted in a mixture of the terminal normal (UDP-N-acetylmuramic acid [NAM]-l-Ala-D-Glu-l-Lys-D-Ala-D-Ala [UDP-Penta]) and alternative (UDP-NAM-l-Ala-γ-D-Glu-l-Lys-D-Ala-D-Lac [UDP-Pentadepsi]) pathway intermediates (2:3 ratio). Time course analyses revealed normal pathway intermediates responding rapidly (peaking in 3 to 10 min) and alternative pathway intermediates responding more slowly (peaking in 15 to 45 min). RT-qPCR demonstrated that vanA operon mRNA transcript levels increased rapidly after exposure, reaching maximal levels in 15 min. To resolve the effect of increased van operon protein expression on PG metabolite levels, linezolid was used to block protein biosynthesis. Surprisingly, linezolid dramatically reduced PG intermediate levels when used alone. When used in combination with vancomycin, linezolid only modestly reduced alternative UDP-linked PG intermediate levels, indicating substantial alternative pathway presence before vancomycin exposure. Comparison of PG intermediate levels between VREfm, vancomycin-sensitive Enterococcus faecium, and methicillin-resistant Staphylococcus aureus after vancomycin exposure demonstrated substantial differences between S. aureus and E. faecium PG biosynthesis pathways. IMPORTANCE VREfm is highly resistant to vancomycin due to the presence of a vancomycin resistance gene cassette. Exposure to vancomycin induces the expression of genes in this cassette, which encode enzymes that provide for an alternative PG biosynthesis pathway. In VanA-type resistance, these alternative pathway enzymes replace the D-Ala-D-Ala terminus of normal PG intermediates with D-Ala-D-Lac terminated intermediates, to which vancomycin cannot bind. While the general features of this resistance mechanism are well known, the details of the choreography between vancomycin exposure, vanA gene induction, and changes in the normal and alternative pathway intermediate levels have not been described previously. This study comprehensively explores how VREfm responds to vancomycin exposure at the mRNA and PG intermediate levels.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Enterococcus faecium/efeitos dos fármacos , Peptidoglicano/metabolismo , RNA Mensageiro/genética , Vancomicina/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Enterococcus faecium/enzimologia , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Óperon/efeitos dos fármacos , RNA Mensageiro/metabolismo , Resistência a Vancomicina
8.
Biol Methods Protoc ; 5(1): bpaa019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376805

RESUMO

Cytosine methylation at carbon-5 (5mC) in DNA plays crucial roles in epigenetic transcriptional regulation during metazoan development. The iron (II), 2-oxoglutarate-dependent Ten-Eleven Translocation (TET)-family dioxygenases initiate active demethylation of 5mC. TET2 oxidizes 5mC in nucleic acids into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine by iterative oxidation. Mutations in the TET2 gene are frequently detected in myeloid malignancies. Despite the established and emerging roles of TET oxygenases in health and diseases, in vitro characterization of these enzymes and their mutants is still in rudimentary stages. Here, we describe an improved positive/negative ion-switching-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that can separate and quantify modified cytosine bases produced by TET-family 5-methylcytosine dioxygenases. This method will help in further elucidate the function of epigenetically important cytosine modifications. To the best of our knowledge, this is the first study reporting ion-switching-based LC-MS/MS method to analyse cytosine variants produced in TET catalysed reactions.

9.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33020220

RESUMO

Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger among bacteria. c-di-AMP regulates many cellular pathways through direct binding to several molecular targets in bacterial cells. c-di-AMP depletion is well known to destabilize the bacterial cell wall, resulting in increased bacteriolysis and enhanced susceptibility to cell wall targeting antibiotics. Using the human pathogen Listeria monocytogenes as a model, we found that c-di-AMP accumulation also impaired cell envelope integrity. An L. monocytogenes mutant deleted for c-di-AMP phosphodiesterases (pdeA pgpH mutant) exhibited a 4-fold increase in c-di-AMP levels and several cell wall defects. For instance, the pdeA pgpH mutant was defective for the synthesis of peptidoglycan muropeptides and was susceptible to cell wall-targeting antimicrobials. Among different muropeptide precursors, we found that the pdeA pgpH strain was particularly impaired in the synthesis of d-Ala-d-Ala, which is required to complete the pentapeptide stem associated with UDP-N-acetylmuramic acid (MurNAc). This was consistent with an increased sensitivity to d-cycloserine, which inhibits the d-alanine branch of peptidoglycan synthesis. Finally, upon examining d-Ala:d-Ala ligase (Ddl), which catalyzes the conversion of d-Ala to d-Ala-d-Ala, we found that its activity was activated by K+ Based on previous reports that c-di-AMP inhibits K+ uptake, we propose that c-di-AMP accumulation impairs peptidoglycan synthesis, partially through the deprivation of cytoplasmic K+ levels, which are required for cell wall-synthetic enzymes.IMPORTANCE The bacterial second messenger c-di-AMP is produced by a large number of bacteria and conditionally essential to many species. Conversely, c-di-AMP accumulation is also toxic to bacterial physiology and pathogenesis, but its mechanisms are largely undefined. We found that in Listeria monocytogenes, elevated c-di-AMP levels diminished muropeptide synthesis and increased susceptibility to cell wall-targeting antimicrobials. Cell wall defects might be an important mechanism for attenuated virulence in bacteria with high c-di-AMP levels.


Assuntos
AMP Cíclico/metabolismo , Listeria monocytogenes/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Listeriose/microbiologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro
10.
ACS Chem Biol ; 14(12): 2887-2894, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31675203

RESUMO

The emergence and spread of antimicrobial resistance is a major public health threat, and there is an urgent need to develop new strategies to address the issue. In this study, the possibility of enhancing a whole cell based antibacterial library screen by increasing the dimensionality of the screening effort is explored using methicillin-resistant Staphylococcus aureus (MRSA) as the target organism. One dimension involved generating and screening a human liver microsome metabolized FDA approved drug library. Comparative screening of the un-metabolized (UM) and pre-metabolized (PM) libraries allows identification of intrinsically active agents from the UM library screen and of agents with active metabolites from the PM library screen. To further enhance this screening effort, it was combined with a -/+ resistant to antibiotic screen (-/+ cefoxitin; Cef). This allows the identification of agents that can act synergistically with the resistant to antibiotic. This approach revealed five compounds with substantially improved activity after metabolism and four compounds with substantial synergistic activity with cefoxitin. Capecitabine in particular only had significant antibacterial activity after metabolism. Its metabolites were isolated, identified, and characterized for spectrum of activity along with several other anticancer drugs with anti-MRSA activity. Floxuridine, gemcitabine, novobiocin, and rifaximin were identified as having substantial synergy with cefoxitin from the -/+Cef screens. Checkerboard assays verified synergy for these agents. Floxuridine demonstrated a particularly high degree of synergy with cefoxitin (FIC = 0.14). This study demonstrates how a dimensionally enhanced comparative screening effort can identify new antibacterial agents and strategies for countering antibacterial agent resistance.


Assuntos
Antibacterianos/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/microbiologia
11.
J Am Soc Mass Spectrom ; 30(3): 448-458, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30421361

RESUMO

D-Amino acids are important biological molecules. Improved analytical methods for their resolution and quantification remain of keen interest. In this study, we investigated the use of Marfey's reagent (chiral) derivatization coupled with LC-MS/MS-based separation and detection of the resulting diastereomers for quantification of the 19 common L- and D-amino acids and glycine. Standard formic acid (pH 2)-based separations on reverse phase media were unable to separate all 19 amino acid DL pairs. In contrast, a water/acetonitrile/ammonium acetate (pH 6.5) solvent system allowed all 19 amino acid DL pairs to be chromatographically resolved on a 30 min gradient, with negative mode detection at pH 6.5 giving good sensitivity. Derivatization reaction rates between amino acids varied substantially, with overnight derivatization required for some amino acids. Chromatography at pH 6.5 combined with MS/MS quantification in negative mode demonstrated good linearity over a wide concentration range for all 20 amino acids. Matrix effects, assessed with an MRSA extract, were negligible. Marfey's derivatized analytes were stable for 24 h at room temperature. This method was demonstrated by determining the levels of these analytes in mid-log phase MRSA extracts. This approach provides for the chromatographic resolution and MS/MS-based quantification of all 20 common L- and D-amino acids in complex matrices. Graphical Abstract.


Assuntos
Alanina/análogos & derivados , Aminoácidos/análise , Aminoácidos/química , Cromatografia Líquida/métodos , Dinitrobenzenos/química , Espectrometria de Massas em Tandem/métodos , Alanina/química , Glicina/química , Concentração de Íons de Hidrogênio , Cinética , Staphylococcus aureus Resistente à Meticilina/química , Sensibilidade e Especificidade , Solventes/química , Estereoisomerismo
12.
J Vis Exp ; (140)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30371677

RESUMO

The epigenetic transcription regulation mediated by 5-methylcytosine (5mC) has played a critical role in eukaryotic development. Demethylation of these epigenetic marks is accomplished by sequential oxidation by ten-eleven translocation dioxygenases (TET1-3), followed by the thymine-DNA glycosylase-dependent base excision repair. Inactivation of the TET2 gene due to genetic mutations or by other epigenetic mechanisms is associated with a poor prognosis in patients with diverse cancers, especially hematopoietic malignancies. Here, we describe an efficient single step purification of enzymatically active untagged human TET2 dioxygenase using cation exchange chromatography. We further provide a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach that can separate and quantify the four normal DNA bases (A, T, G, and C), as well as the four modified cytosine bases (5-methyl, 5-hydroxymethyl, 5-formyl, and 5-carboxyl). This assay can be used to evaluate the activity of wild type and mutant TET2 dioxygenases.


Assuntos
Cromatografia Líquida , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Ensaios Enzimáticos/métodos , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Proto-Oncogênicas/metabolismo , Espectrometria de Massas em Tandem , 5-Metilcitosina/análise , 5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Citosina/análise , DNA/química , Desmetilação do DNA , Dioxigenases , Humanos
13.
Biophys Chem ; 241: 38-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30099247

RESUMO

To address complex thermodynamic systems with multiple interacting events, we have developed the concept of hierarchical thermodynamic interactions. In this study, this concept is extended to protein-ligand systems with similar but not identical protein subunits, and applied to the analysis of previously published NMR and UV-vis monitored hemoglobin oxygen binding data. Non-linear regression provided estimated errors for statistically significant parameters, but not for null (zero) valued parameters. A numerical/graphical profiling approach was therefore used to assess confidence intervals and correlations for both the statistically significant and nulled valued parameters in this model. Individual parameters were set to fixed values around their best-fit value, and the subset of statistically significant parameters re-minimized against hemoglobin oxygen binding data. Plots provide a graphical representation of parameter confidence intervals and correlations, and demonstrate how the two different data types - UV-vis and NMR - constrain the range of values for each parameter. This analysis further illustrates the value of hierarchically formulated models for the analysis of complex state systems, and illuminates the complexity of parameter space around the derived minimum microscopic model of hemoglobin oxygen binding.


Assuntos
Hemoglobinas/metabolismo , Oxigênio/metabolismo , Hemoglobinas/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxigênio/química , Ligação Proteica , Espectrofotometria , Termodinâmica
14.
Artigo em Inglês | MEDLINE | ID: mdl-28320719

RESUMO

Cytoplasmic peptidoglycan (PG) precursor levels were determined in methicillin-resistant Staphylococcus aureus (MRSA) after exposure to several cell wall-targeting antibiotics. Three experiments were performed: (i) exposure to 4× MIC levels (acute); (ii) exposure to sub-MIC levels (subacute); (iii) a time course experiment of the effect of vancomycin. In acute exposure experiments, fosfomycin increased UDP-GlcNAc, as expected, and resulted in substantially lower levels of total UDP-linked metabolite accumulation relative to other pathway inhibitors, indicating reduced entry into this pathway. Upstream inhibitors (fosfomycin, d-cycloserine, or d-boroalanine) reduced UDP-MurNAc-pentapeptide levels by more than fourfold. Alanine branch inhibitors (d-cycloserine and d-boroalanine) reduced d-Ala-d-Ala levels only modestly (up to 4-fold) but increased UDP-MurNAc-tripeptide levels up to 3,000-fold. Downstream pathway inhibitors (vancomycin, bacitracin, moenomycin, and oxacillin) increased UDP-MurNAc-pentapeptide levels up to 350-fold and UDP-MurNAc-l-Ala levels up to 80-fold, suggesting reduced MurD activity by downstream inhibitor action. Sub-MIC exposures demonstrated effects even at 1/8× MIC which strongly paralleled acute exposure changes. Time course data demonstrated that UDP-linked intermediate levels respond rapidly to vancomycin exposure, with several intermediates increasing three- to sixfold within minutes. UDP-linked intermediate level changes were also multiphasic, with some increasing, some decreasing, and some increasing and then decreasing. The total (summed) UDP-linked intermediate pool increased by 1,475 µM/min during the first 10 min after vancomycin exposure, providing a revised estimate of flux in this pathway during logarithmic growth. These observations outline the complexity of PG precursor response to antibiotic exposure in MRSA and indicate likely sites of regulation (entry and MurD).


Assuntos
Antibacterianos/farmacologia , Parede Celular/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Peptidoglicano/metabolismo , Parede Celular/efeitos dos fármacos , Metabolômica/métodos , Meticilina/farmacologia
15.
Protein Expr Purif ; 132: 143-151, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188826

RESUMO

5-Methylcytosine within CpG islands in DNA plays a crucial role in epigenetic transcriptional regulation during metazoan development. Recently, it has been established that the Ten-Eleven Translocation (TET) family, Fe(II)- and 2-oxoglutarate (2OG/αKG)-dependent oxygenases initiate 5-methylcytosine demethylation by iterative oxidation reactions. Mutations in the TET2 gene are frequently detected in patients with myeloid malignancies. Here, we describe the cloning of untagged human TET2 demethylase using Gateway technology and its efficient expression in E. coli. The untagged TET2 enzyme was purified using cation exchange and heparin sepharose chromatography. In addition, a reliable quantitative liquid chromatography-tandem mass spectrometry-based assay was utilized to analyze the activity of TET2 oxygenase. This assay was further used to analyze the activity of a number of clinical TET2 variants with mutations in the 2OG binding sites. Our results demonstrate that the activity of one TET2 mutant, TET2-R1896S, can be restored using an excess of 2OG in the reaction mixture. These studies suggest that dietary 2OG supplements, which are commonly used for several other conditions, may be used to treat some patients with myeloid malignancies harboring TET2-R1896S mutation. Results described in this paper serve as a foundation for better characterization of wild type as well as mutant TET2 demethylases.


Assuntos
Proteínas de Ligação a DNA , Expressão Gênica , Oxirredutases , Proteínas Proto-Oncogênicas , Cromatografia Líquida , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Dioxigenases , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Espectrometria de Massas , Oxirredutases/biossíntese , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
16.
Anal Biochem ; 516: 75-85, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27771391

RESUMO

Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of ß-aminoisobutyric acid (ß-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-ß-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 µM), an intermediate level of l-BAIBA (0.8 µM), and low but detectable levels (<0.2 µM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules.


Assuntos
Aminobutiratos/sangue , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Humanos
17.
Biochimie ; 121: 72-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26612730

RESUMO

Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 µM for UDP-GlcNAc-Enolpyruvyate to 1200 µM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 µM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 µM/min. The total UDP-linked intermediates pool (2490 µM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 µM) and low in E. coli (45 µM).


Assuntos
Peptidoglicano/metabolismo , Parede Celular/metabolismo , Metabolômica , Staphylococcus aureus/metabolismo
18.
Anal Biochem ; 465: 12-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25086364

RESUMO

Bacterial cell wall biosynthesis is the target of several antibiotics and is of interest as a target for new inhibitor development. The cytoplasmic steps of this pathway involve a series of uridine diphosphate (UDP)-linked peptidoglycan intermediates. Quantification of these intermediates is essential for studies of current agents targeting this pathway and for the development of new agents targeting this pathway. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for quantification of these intermediates in Staphylococcus aureus. To address the problem of poor retention of UDP-linked intermediates on reverse phase media, an ion-pairing (IP) approach using N,N-dimethylhexylamine was developed. MS/MS detection in negative mode was optimized for UDP-GlcNAc, UDP-MurNAc, UDP-MurNAc-L-Ala, UDP-MurNAc-L-Ala-D-Glu, UDP-MurNAc-L-Ala-D-Glu-L-Lys, and UDP-MurNAc-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. The lower limits of quantification (LLOQs) for these analytes were 1.8, 1.0, 0.8, 2.2, 0.6, and 0.5 pmol, respectively, which correspond to LLOQs of 6, 3, 3, 7, 2, and 2 nmol/g bacteria, respectively. This method was demonstrated for quantification of in vivo levels of these intermediates from S. aureus (0.3mg dry weight analyzed) treated with fosfomycin, D-boroAla, D-cycloserine, and vancomycin. Metabolite accumulation is consistent with the known targets of these antibiotics and indicates potential regulatory loops within this pathway.


Assuntos
Parede Celular/metabolismo , Staphylococcus aureus/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Antibacterianos/farmacologia , Parede Celular/química , Cromatografia Líquida , Espectrometria de Massas , Staphylococcus aureus/química , Açúcares de Uridina Difosfato/análise
19.
Anal Biochem ; 442(2): 166-71, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938774

RESUMO

Vancomycin exerts its antibacterial activity by binding to d-Ala-d-Ala in bacterial cell wall precursors. Vancomycin resistance in vancomycin-resistant enterococci (VRE) is due to an alternative cell wall biosynthesis pathway in which d-Ala-d-Ala is replaced, most commonly by d-Ala-d-Lac. In this study, we extend our recently developed Marfey's derivatization-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for l-Ala, d-Ala, and d-Ala-d-Ala to d-Ala-d-Lac and apply it to the quantitation of these metabolites in VRE. The first step in this effort was the development of an effective washing method for removing medium components from VRE cells. Mar-d-Ala-d-Lac was well resolved chromatographically from Mar-d-Ala-d-Ala, a prerequisite for MS/MS quantitation of d-Ala-d-Ala and d-Ala-d-Lac. Mar-d-Ala-d-Lac gave similar detection parameters, sensitivity, and linearity as Mar-d-Ala-d-Ala. l-Ala, d-Ala, d-Ala-d-Ala, and d-Ala-d-Lac levels in VRE were then determined in the presence of variable vancomycin levels. Exposure to vancomycin resulted in a dramatic reduction of d-Ala-d-Ala, with a response midpoint at approximately 0.06µg/ml vancomycin and with a broad response profile up to 128µg/ml vancomycin. In contrast, d-Ala-d-Lac was present in the absence of vancomycin, with its level constant up to 128µg/ml vancomycin. This method will be useful for the discovery, characterization, and refinement of new agents targeting vancomycin resistance in VRE.


Assuntos
Alanina/análogos & derivados , Cromatografia Líquida/métodos , Enterococcus/efeitos dos fármacos , Enterococcus/metabolismo , Lactatos/metabolismo , Espectrometria de Massas em Tandem/métodos , Resistência a Vancomicina , Alanina/metabolismo , Humanos , Modelos Lineares , Vancomicina/farmacologia
20.
Anal Biochem ; 425(2): 145-50, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446498

RESUMO

The enzymatic cleavage products of ß-endorphin (ß-endorphin1-27 and Gly-Gln) reduce voluntary alcohol consumption in alcohol-preferring (P) rats. Gly-Gln also inhibits the reward-benefiting effects of morphine and nicotine. It would be useful for the investigation of these effects to have an analytical method suitable for Gly-Gln detection and quantitation. Given the now widespread availability of liquid chromatography-tandem mass spectrometry (LC-MS/MS) instruments, the development of an LC-MS/MS-based approach seemed a viable option. An LC-MS/MS method for Gly-Gln quantitation was developed based on derivatization with Marfey's reagent. The Marfey's adduct of Gly-Gln (Mar-Gly-Gln) was chromatographically resolved and readily detected and quantitated by LC-MS/MS. Precursor/product positive ions of 456.2/366.2, 456.2/237.2, and 456.2/147.0 were used for detection and quantitation. This method shows good linearity from 1 to 500 pmol of Mar-Gly-Gln (R2 > 0.99). The assay also demonstrated good accuracy and precision, with an average percentage standard deviation for Gly-Gln over the range of the assay of less than 5%. A combination of multiple reaction monitoring (MRM) fragment ratio normalization and chromatographic peak shifting was used to ensure that the LC-MS/MS peak for Mar-Gly-Gln was free from possible isobar interferences. This assay was then demonstrated for the determination of in vivo Gly-Gln levels in P and Sprague-Dawley rat cortex and nucleus accumbens samples.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Dipeptídeos/análise , Espectrometria de Massas em Tandem , Animais , Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...